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1 Introduction
For a random sample covariance matrix C from n samples of a probability distribution on Rm, we con-
sider the distribution of its extreme eigenvalues. In particular, we are concerned with the moments
of the distribution of eigenvalues. We refer to the moments of the maximum eigenvalue as the non-
negative moments of the matrix, i.e., for q ≥ 0, the expected value E[∥Cq∥]. Similarly, we refer to the
moments of the inverse minimimum eigenvalue as the negative moments of the matrix, i.e., for q ≥ 0,
the expected value E[∥C−q∥]. We are interested in the easy regime of n → ∞.

In Section 2, we will show that as n → ∞, the nonnegative moments satisfy E[∥Cq∥] = O(1) for
subgaussian distributions. Subgaussianity is not strong enough to control the negative moments, so in
Section 3 we show that in the special case of a gaussian distribution, the sample covariance satisfies
E[∥C−q∥] = O(m1+ϵ) for arbitrarily small ϵ > 0.

2 Nonnegative Moments of a Random Matrix
Let X be an m × n matrix with independent, mean-zero, subgaussian entries. Then, for any t > 0, we
have by [Ver18, Theorem 4.4.5],
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with probability less that 2 exp(−t2), where C0 > 0 is some absolute constant, and K is the maximum
subgaussian norm of the entries of X. Let us assume that K = 1, for simplicity. For C = n−1XX⊤, we
can bound the nonnegative moments of ∥C∥ = n−1∥X∥2 by integrating this tail bound. Let q ≥ 1, and
consider
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As n → ∞, it is clear that this converges to a constant, indicating that E[∥Cq∥] = On(1).

3 Negative Moments of a Random Matrix
We now move on to the moments of the matrix inverse. The assumption of subgaussianity used in
Section 2 is not sufficient here. To see why, consider the Rademacher random variable, which takes
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values {−1, 1} with equal probability. Taking X to be a random matrix with independent Rademacher-
valued entries, it is clear that X is singular with nonzero (albeit, tending to zero as n → ∞) probability.
That is to say, ∥(XX⊤)−q∥ = ∞ with nonzero probability, which obstructs the existence of the qth

moment.
We now consider the guassian case, so that XX⊤ follows a Wishart distribution, which is almost

surely nonsingular. For any u ∈ Rm, by [Eat07, Proposition 8.9], the random variable ⟨u, (XX⊤)−1u⟩
follows an inverse-χ2 distribution with n−m+ 1 degrees of freedom. Owing to the fact that (XX⊤)−1

is positive semidefinite, it also holds that for any orthonormal basis {uj}mj=1 for Rm, we have

max
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⟨uj , (XX⊤)−1uj⟩ ≤ ∥(XX⊤)−1∥ ≤ m ·max
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⟨uj , (XX⊤)−1uj⟩. (3)

The left-hand inequality is obvious, and the right-hand inequality follows by considering the trace of
(XX⊤)−1. Recalling the definition of the sample covariance as C = n−1XX⊤, we bound the nega-
tive moments of C via a union bound argument over an orthonormal basis. Let q ≥ 1, and let an
orthonormal basis {uj}mj=1 for Rm be given arbitrarily. Then, we have
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which implies via a union bound argument, for any t > 0,
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We can now bound the moment by integration.
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Each summand is merely (a scaled version of) the qth moment of an inverse-χ2 random variable with
n−m+ 1 degrees of freedom, which is known to be∫ ∞
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As n → ∞, this clearly tends to mq, so that E[∥C−q∥] = On(m
q+1). Since this argument holds for

arbitrary q, Lyapunov’s inequality can be applied to yield the tighter bound E[∥C−q∥] = On(m
q+ϵ) for

arbitrary ϵ > 0. This is in contrast to the On(1) bound on E[∥Cq∥], which is independent of m.
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