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Denote the n-torus by Tn = ∏n
j=1 S1, where S1 denotes the circle. We identify the circle

with the half-open interval [0, 2π), where the endpoints are identified with one another.
This is the usual setup for considering periodic functions in Euclidean space – a periodic
function on the real line, for example, is treated as a function on the circle.

For a function f ∈ L1(Tn), we define the Fourier series of f to be the expansion

S[ f ](x) = ∑
ξ∈Zn

f̂ (ξ) · exp (i⟨ξ, x⟩) ,

where i =
√
−1, and each Fourier series coefficient f̂ (ξ) is calculated as

f̂ (ξ) = (2π)−n
∫

Tn
f (x) exp (−i⟨ξ, x⟩) dx.

All of the usual justifications show that the Fourier series representation of f is indeed
convergent to f in L1(Tn).

1 Hölder continuity

We are of course not generally confronted with arbitrary square-integrable functions, but
with functions that have greater regularity properties. Let L ≥ 0, p ≥ 1 be given. A
function f : Tn → R is said to be Lipschitz with respect to the p-norm if there exists a
constant L ≥ 0 such that for all x, y ∈ Tn,∣∣ f (x)− f (y)

∣∣ ≤ L · ∥x − y∥p.

Furthermore, if some 0 ≤ α ≤ 1 is given, f is said to be α-Hölder continuous with respect
to the p-norm if there exists a constant L ≥ 0 such that for all x, y ∈ Tn,∣∣ f (x)− f (y)

∣∣ ≤ L · ∥x − y∥α
p.

1



Observe that taking α = 1 recovers the notion of a Lipschitz function, and that the space
of α-Hölder continuous functions grows as α → 0. When α = 0, the above condition
implies that f is uniformly continuous (and given that the domain of f is compact, this
just says that f is continuous). In all cases, the p-norm is to be understood in terms of the
angular distances on the component circles making up to n-torus. Note that all Hölder
continuous function are continuous, and are thus contained in L1(Tn).

2 Integral modulus of continuity

For f ∈ L1(Tn) and h ∈ Rn, define the integral modulus of continuity as the quantity

Ω( f , h) = ∥ f (t + h)− f (t)∥L1 .

Again, f (t + h) is meant to be understood via the periodic extension (angular addition).
We now provide an extension of the theorem from [1, pp. 26]. First, a proposition is in
order.

Proposition 2.1. Let ξ ∈ Zn be given such that ξ ̸= 0. Suppose that η ∈ Rn is such that
⟨ξ, η⟩ = −1. For f ∈ L1(Tn), it holds that

∣∣ f̂ (ξ)
∣∣ ≤ (2π)−n

2
Ω ( f , πη) .

Proof. The proof is by direct calculation.

f̂ (ξ) = (2π)−n
∫

Tn
f (x) exp (−i⟨ξ, x⟩) dx

= − (2π)−n
∫

Tn
f (x) exp (−i⟨ξ, x − πη⟩) dx

= − (2π)−n
∫

Tn
f (x + πη) exp (−i⟨ξ, x⟩) dx.

Then, we observe the inequality∣∣ f̂ (ξ)
∣∣ = 1

2

∣∣ f̂ (ξ) + f̂ (ξ)
∣∣

=
(2π)−n

2

∣∣ ∫
Tn

( f (x + πη)− f (x)) exp (−i⟨ξ, x⟩) dx
∣∣

≤ (2π)−n

2
Ω ( f , πη) ,

completing the proof.

This can then be applied to Hölder continuous functions by considering how the conti-
nuity conditions affect the integral modulus of continuity.
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Theorem 2.2. Let ξ ∈ Zn, 0 ≤ α ≤ 1, p ≥ 1 be given such that ξ ̸= 0. If f is α-Hölder
continuous on Tn with respect to the p-norm, then∣∣ f̂ (ξ)

∣∣ ≤ C · ∥ξ∥−α
q ,

where q is the Hölder dual1 of p, and C ≥ 0 is a constant independent of ξ.

Proof. We will prove this by selecting an η ∈ Rn such that ⟨ξ, η⟩ = −1 and Ω( f , πη) is
minimized. First, observe by assumption that

Ω( f , πη) =
∫

Tn

∣∣ f (x + πη)− f (x)
∣∣dx ≤

∫
Tn

L∥πη∥α
pdx = (2π)n παL∥η∥α

p,

for some L ≥ 0 dependent on f . So, we seek to minimize ∥η∥α
p subject to ⟨ξ, η⟩ = −1.

One can check, by properties of the dual of the p-norm for finite-dimensional spaces, that
the minimum such value is attained as ∥η∥α

p = ∥ξ∥−α
q . Applying Proposition 2.1 yields

the desired bound.

Theorem 2.2 indicates that as α → 1 (that is, as the demands of the continuity condition
strengthen up to the point of being Lipschitz), the guaranteed decay of the Fourier series
becomes stronger. This conforms to intuition: smooth functions are low-pass. Moreover,
in the proof, we see that the constant C is proportional to the bounding constant of the
α-Hölder continuity condition.

3 Equivalence of norms

In Theorem 2.2, we went through the trouble of considering the necessary results for
norms other than p = 2. When n is fixed, all p-norms are equivalent for p ≥ 1, so the
decay properties all say essentially the same thing, with some adjustment of constant
factors. However, one may be interested in understanding a sequence of functions on
toruses2 of increasing dimension, in which case distinguishing between different values
of p for the “sequential” regime may be useful. There is no need to go into the details in
this note, though.
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1That is, the number q such that p−1 + q−1 = 1. When p = 1, the Hölder dual is given by q = ∞, and
vice-versa.

2I do not like using Latin plural forms when I do not have to. If you are reading this aloud for some
reason, feel free to say ‘tori’ if it makes you feel better.
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